direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C32.20He3, (C3×C18)⋊3C9, (C3×C9)⋊10C18, (C3×C6).23He3, C32⋊C9.15C6, C6.5(C32⋊C9), C33.33(C3×C6), (C32×C9).16C6, (C32×C18).4C3, C32.9(C3×C18), C32.21(C2×He3), C6.4(He3⋊C3), C6.4(C3.He3), (C32×C6).21C32, (C3×C6).63- 1+2, C32.6(C2×3- 1+2), (C3×C6).9(C3×C9), C3.5(C2×C32⋊C9), (C2×C32⋊C9).6C3, C3.1(C2×He3⋊C3), C3.1(C2×C3.He3), SmallGroup(486,75)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C32.20He3
G = < a,b,c,d,e,f | a2=b3=c3=e3=1, d3=c-1, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=cde-1, fef-1=c-1e >
Subgroups: 180 in 72 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C32, C18, C3×C6, C3×C6, C3×C6, C3×C9, C3×C9, C33, C3×C18, C3×C18, C32×C6, C32⋊C9, C32×C9, C2×C32⋊C9, C32×C18, C32.20He3, C2×C32.20He3
Quotients: C1, C2, C3, C6, C9, C32, C18, C3×C6, C3×C9, He3, 3- 1+2, C3×C18, C2×He3, C2×3- 1+2, C32⋊C9, He3⋊C3, C3.He3, C2×C32⋊C9, C2×He3⋊C3, C2×C3.He3, C32.20He3, C2×C32.20He3
(1 115)(2 116)(3 117)(4 109)(5 110)(6 111)(7 112)(8 113)(9 114)(10 89)(11 90)(12 82)(13 83)(14 84)(15 85)(16 86)(17 87)(18 88)(19 98)(20 99)(21 91)(22 92)(23 93)(24 94)(25 95)(26 96)(27 97)(28 102)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 100)(36 101)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 136)(56 137)(57 138)(58 139)(59 140)(60 141)(61 142)(62 143)(63 144)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 41 29)(2 42 30)(3 43 31)(4 44 32)(5 45 33)(6 37 34)(7 38 35)(8 39 36)(9 40 28)(10 20 161)(11 21 162)(12 22 154)(13 23 155)(14 24 156)(15 25 157)(16 26 158)(17 27 159)(18 19 160)(46 56 64)(47 57 65)(48 58 66)(49 59 67)(50 60 68)(51 61 69)(52 62 70)(53 63 71)(54 55 72)(73 82 92)(74 83 93)(75 84 94)(76 85 95)(77 86 96)(78 87 97)(79 88 98)(80 89 99)(81 90 91)(100 112 119)(101 113 120)(102 114 121)(103 115 122)(104 116 123)(105 117 124)(106 109 125)(107 110 126)(108 111 118)(127 137 145)(128 138 146)(129 139 147)(130 140 148)(131 141 149)(132 142 150)(133 143 151)(134 144 152)(135 136 153)
(1 7 4)(2 8 5)(3 9 6)(10 16 13)(11 17 14)(12 18 15)(19 25 22)(20 26 23)(21 27 24)(28 34 31)(29 35 32)(30 36 33)(37 43 40)(38 44 41)(39 45 42)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)(109 115 112)(110 116 113)(111 117 114)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)(136 142 139)(137 143 140)(138 144 141)(145 151 148)(146 152 149)(147 153 150)(154 160 157)(155 161 158)(156 162 159)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(46 52 49)(47 53 50)(48 54 51)(55 61 58)(56 62 59)(57 63 60)(64 70 67)(65 71 68)(66 72 69)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(127 133 130)(128 134 131)(129 135 132)(136 142 139)(137 143 140)(138 144 141)(145 151 148)(146 152 149)(147 153 150)(154 157 160)(155 158 161)(156 159 162)
(1 92 67 41 73 49 29 82 59)(2 96 68 42 77 50 30 86 60)(3 91 69 43 81 51 31 90 61)(4 95 70 44 76 52 32 85 62)(5 99 71 45 80 53 33 89 63)(6 94 72 37 75 54 34 84 55)(7 98 64 38 79 46 35 88 56)(8 93 65 39 74 47 36 83 57)(9 97 66 40 78 48 28 87 58)(10 144 110 20 152 126 161 134 107)(11 142 117 21 150 124 162 132 105)(12 140 115 22 148 122 154 130 103)(13 138 113 23 146 120 155 128 101)(14 136 111 24 153 118 156 135 108)(15 143 109 25 151 125 157 133 106)(16 141 116 26 149 123 158 131 104)(17 139 114 27 147 121 159 129 102)(18 137 112 19 145 119 160 127 100)
G:=sub<Sym(162)| (1,115)(2,116)(3,117)(4,109)(5,110)(6,111)(7,112)(8,113)(9,114)(10,89)(11,90)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,98)(20,99)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,41,29)(2,42,30)(3,43,31)(4,44,32)(5,45,33)(6,37,34)(7,38,35)(8,39,36)(9,40,28)(10,20,161)(11,21,162)(12,22,154)(13,23,155)(14,24,156)(15,25,157)(16,26,158)(17,27,159)(18,19,160)(46,56,64)(47,57,65)(48,58,66)(49,59,67)(50,60,68)(51,61,69)(52,62,70)(53,63,71)(54,55,72)(73,82,92)(74,83,93)(75,84,94)(76,85,95)(77,86,96)(78,87,97)(79,88,98)(80,89,99)(81,90,91)(100,112,119)(101,113,120)(102,114,121)(103,115,122)(104,116,123)(105,117,124)(106,109,125)(107,110,126)(108,111,118)(127,137,145)(128,138,146)(129,139,147)(130,140,148)(131,141,149)(132,142,150)(133,143,151)(134,144,152)(135,136,153), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,160,157)(155,161,158)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,157,160)(155,158,161)(156,159,162), (1,92,67,41,73,49,29,82,59)(2,96,68,42,77,50,30,86,60)(3,91,69,43,81,51,31,90,61)(4,95,70,44,76,52,32,85,62)(5,99,71,45,80,53,33,89,63)(6,94,72,37,75,54,34,84,55)(7,98,64,38,79,46,35,88,56)(8,93,65,39,74,47,36,83,57)(9,97,66,40,78,48,28,87,58)(10,144,110,20,152,126,161,134,107)(11,142,117,21,150,124,162,132,105)(12,140,115,22,148,122,154,130,103)(13,138,113,23,146,120,155,128,101)(14,136,111,24,153,118,156,135,108)(15,143,109,25,151,125,157,133,106)(16,141,116,26,149,123,158,131,104)(17,139,114,27,147,121,159,129,102)(18,137,112,19,145,119,160,127,100)>;
G:=Group( (1,115)(2,116)(3,117)(4,109)(5,110)(6,111)(7,112)(8,113)(9,114)(10,89)(11,90)(12,82)(13,83)(14,84)(15,85)(16,86)(17,87)(18,88)(19,98)(20,99)(21,91)(22,92)(23,93)(24,94)(25,95)(26,96)(27,97)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,100)(36,101)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,136)(56,137)(57,138)(58,139)(59,140)(60,141)(61,142)(62,143)(63,144)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,41,29)(2,42,30)(3,43,31)(4,44,32)(5,45,33)(6,37,34)(7,38,35)(8,39,36)(9,40,28)(10,20,161)(11,21,162)(12,22,154)(13,23,155)(14,24,156)(15,25,157)(16,26,158)(17,27,159)(18,19,160)(46,56,64)(47,57,65)(48,58,66)(49,59,67)(50,60,68)(51,61,69)(52,62,70)(53,63,71)(54,55,72)(73,82,92)(74,83,93)(75,84,94)(76,85,95)(77,86,96)(78,87,97)(79,88,98)(80,89,99)(81,90,91)(100,112,119)(101,113,120)(102,114,121)(103,115,122)(104,116,123)(105,117,124)(106,109,125)(107,110,126)(108,111,118)(127,137,145)(128,138,146)(129,139,147)(130,140,148)(131,141,149)(132,142,150)(133,143,151)(134,144,152)(135,136,153), (1,7,4)(2,8,5)(3,9,6)(10,16,13)(11,17,14)(12,18,15)(19,25,22)(20,26,23)(21,27,24)(28,34,31)(29,35,32)(30,36,33)(37,43,40)(38,44,41)(39,45,42)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,160,157)(155,161,158)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(46,52,49)(47,53,50)(48,54,51)(55,61,58)(56,62,59)(57,63,60)(64,70,67)(65,71,68)(66,72,69)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(127,133,130)(128,134,131)(129,135,132)(136,142,139)(137,143,140)(138,144,141)(145,151,148)(146,152,149)(147,153,150)(154,157,160)(155,158,161)(156,159,162), (1,92,67,41,73,49,29,82,59)(2,96,68,42,77,50,30,86,60)(3,91,69,43,81,51,31,90,61)(4,95,70,44,76,52,32,85,62)(5,99,71,45,80,53,33,89,63)(6,94,72,37,75,54,34,84,55)(7,98,64,38,79,46,35,88,56)(8,93,65,39,74,47,36,83,57)(9,97,66,40,78,48,28,87,58)(10,144,110,20,152,126,161,134,107)(11,142,117,21,150,124,162,132,105)(12,140,115,22,148,122,154,130,103)(13,138,113,23,146,120,155,128,101)(14,136,111,24,153,118,156,135,108)(15,143,109,25,151,125,157,133,106)(16,141,116,26,149,123,158,131,104)(17,139,114,27,147,121,159,129,102)(18,137,112,19,145,119,160,127,100) );
G=PermutationGroup([[(1,115),(2,116),(3,117),(4,109),(5,110),(6,111),(7,112),(8,113),(9,114),(10,89),(11,90),(12,82),(13,83),(14,84),(15,85),(16,86),(17,87),(18,88),(19,98),(20,99),(21,91),(22,92),(23,93),(24,94),(25,95),(26,96),(27,97),(28,102),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,100),(36,101),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,136),(56,137),(57,138),(58,139),(59,140),(60,141),(61,142),(62,143),(63,144),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,41,29),(2,42,30),(3,43,31),(4,44,32),(5,45,33),(6,37,34),(7,38,35),(8,39,36),(9,40,28),(10,20,161),(11,21,162),(12,22,154),(13,23,155),(14,24,156),(15,25,157),(16,26,158),(17,27,159),(18,19,160),(46,56,64),(47,57,65),(48,58,66),(49,59,67),(50,60,68),(51,61,69),(52,62,70),(53,63,71),(54,55,72),(73,82,92),(74,83,93),(75,84,94),(76,85,95),(77,86,96),(78,87,97),(79,88,98),(80,89,99),(81,90,91),(100,112,119),(101,113,120),(102,114,121),(103,115,122),(104,116,123),(105,117,124),(106,109,125),(107,110,126),(108,111,118),(127,137,145),(128,138,146),(129,139,147),(130,140,148),(131,141,149),(132,142,150),(133,143,151),(134,144,152),(135,136,153)], [(1,7,4),(2,8,5),(3,9,6),(10,16,13),(11,17,14),(12,18,15),(19,25,22),(20,26,23),(21,27,24),(28,34,31),(29,35,32),(30,36,33),(37,43,40),(38,44,41),(39,45,42),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105),(109,115,112),(110,116,113),(111,117,114),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132),(136,142,139),(137,143,140),(138,144,141),(145,151,148),(146,152,149),(147,153,150),(154,160,157),(155,161,158),(156,162,159)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(46,52,49),(47,53,50),(48,54,51),(55,61,58),(56,62,59),(57,63,60),(64,70,67),(65,71,68),(66,72,69),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(127,133,130),(128,134,131),(129,135,132),(136,142,139),(137,143,140),(138,144,141),(145,151,148),(146,152,149),(147,153,150),(154,157,160),(155,158,161),(156,159,162)], [(1,92,67,41,73,49,29,82,59),(2,96,68,42,77,50,30,86,60),(3,91,69,43,81,51,31,90,61),(4,95,70,44,76,52,32,85,62),(5,99,71,45,80,53,33,89,63),(6,94,72,37,75,54,34,84,55),(7,98,64,38,79,46,35,88,56),(8,93,65,39,74,47,36,83,57),(9,97,66,40,78,48,28,87,58),(10,144,110,20,152,126,161,134,107),(11,142,117,21,150,124,162,132,105),(12,140,115,22,148,122,154,130,103),(13,138,113,23,146,120,155,128,101),(14,136,111,24,153,118,156,135,108),(15,143,109,25,151,125,157,133,106),(16,141,116,26,149,123,158,131,104),(17,139,114,27,147,121,159,129,102),(18,137,112,19,145,119,160,127,100)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3N | 6A | ··· | 6H | 6I | ··· | 6N | 9A | ··· | 9R | 9S | ··· | 9AJ | 18A | ··· | 18R | 18S | ··· | 18AJ |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | ··· | 1 | 3 | ··· | 3 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||||
image | C1 | C2 | C3 | C3 | C6 | C6 | C9 | C18 | He3 | 3- 1+2 | C2×He3 | C2×3- 1+2 | He3⋊C3 | C3.He3 | C2×He3⋊C3 | C2×C3.He3 |
kernel | C2×C32.20He3 | C32.20He3 | C2×C32⋊C9 | C32×C18 | C32⋊C9 | C32×C9 | C3×C18 | C3×C9 | C3×C6 | C3×C6 | C32 | C32 | C6 | C6 | C3 | C3 |
# reps | 1 | 1 | 6 | 2 | 6 | 2 | 18 | 18 | 2 | 4 | 2 | 4 | 6 | 12 | 6 | 12 |
Matrix representation of C2×C32.20He3 ►in GL5(𝔽19)
1 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 11 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 11 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 6 | 0 |
0 | 0 | 1 | 0 | 9 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 7 | 11 | 0 |
0 | 0 | 2 | 0 | 7 |
16 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 7 | 10 | 0 |
0 | 0 | 10 | 12 | 1 |
0 | 0 | 7 | 3 | 0 |
G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,18,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[11,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,11,0,0,0,0,0,11],[1,0,0,0,0,0,1,0,0,0,0,0,6,0,1,0,0,0,6,0,0,0,0,0,9],[1,0,0,0,0,0,1,0,0,0,0,0,1,7,2,0,0,0,11,0,0,0,0,0,7],[16,0,0,0,0,0,1,0,0,0,0,0,7,10,7,0,0,10,12,3,0,0,0,1,0] >;
C2×C32.20He3 in GAP, Magma, Sage, TeX
C_2\times C_3^2._{20}{\rm He}_3
% in TeX
G:=Group("C2xC3^2.20He3");
// GroupNames label
G:=SmallGroup(486,75);
// by ID
G=gap.SmallGroup(486,75);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,986,2169]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=e^3=1,d^3=c^-1,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=c*d*e^-1,f*e*f^-1=c^-1*e>;
// generators/relations